
For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics,
1801 Alexander Bell Drive, Suite 500, Reston, VA  20191

AIAA  2000-0346

Self-Scheduling Parallel Methods for
Multiple Serial Codes with
Application to WOPWOP

Lyle N. Long
The Pennsylvania State University
University Park, PA

Kenneth S. Brentner
NASA Langley Research Center
Hampton, VA

38th Aerospace Sciences
Meeting & Exhibit

10 – 13 January 2000 / Reno, NV



AIAA-2000-0346

American Institute of Aeronautics and Astronautics
1

Self-Scheduling Parallel Methods for Multiple Serial Codes with
Application to WOPWOP

Lyle N. Long*

The Pennsylvania State University
University Park, PA 16802

lnl@psu.edu

and
Kenneth S. Brentner†

NASA Langley Research Center
Hampton, VA 23681

k.s.brentner@larc.nasa.gov

ABSTRACT
This paper presents a scheme for efficiently running

a large number of serial jobs on parallel computers.
Two examples are given of computer programs that run
relatively quickly, but often they must be run numerous
times to obtain all the results needed.  It is very
common in science and engineering to have codes that
are not massive computing challenges in themselves,
but due to the number of instances that must be run,
they do become large-scale computing problems.  The
two examples given here represent common problems
in aerospace engineering: aerodynamic panel methods
and aeroacoustic integral methods.  The first example
simply solves many systems of linear equations.  This is
representative of an aerodynamic panel code where
someone would like to solve for numerous angles of
attack.  The complete code for this first example is
included in the appendix so that it can be readily used
by others as a template.  The second example is an
aeroacoustics code (WOPWOP) that solves the Ffowcs
Williams–Hawkings equation to predict the far-field
sound due to rotating blades.  In this example, one quite
often needs to compute the sound at numerous observer
locations, hence parallelization is utilized to automate
the noise computation for a large number of observers.

INTRODUCTION
The purpose of this paper is to illustrate how one

can use a wide variety of parallel machines (e.g.
parallel supercomputers, Beowulf clusters, or a
heterogeneous workstation cluster) to solve a large
number of small problems.  With the rapid increase in
computer speed, more and more scientists and
engineers are content with the computational
performance of workstations. Workstations can now

solve computational fluid dynamics problems
consisting of millions of grid points, and many people
are content with that many degrees of freedom.  While
it is crucial to have some people ‘pushing the envelope’
and solving problems with billions of grid points, fewer
and fewer people need (or can afford) the power offered
by the large machines found at national supercomputer
centers.  In addition, the supercomputing community
often over-emphasizes massive grand challenge type
problems.   However, there are a huge number of
important engineering and scientific problems that
involve relatively small codes that run relatively
quickly.  These codes could take advantage of
supercomputer centers and networked workstations  by
using the methodology proposed here.

For example, there are some very important
scientific questions in surface chemistry1, supercritical
fluids2,3, quantum Monte Carlo4, chemical kinetics5, and
aeroacoustics6 that can be tackled using relatively
small-scale molecular dynamics or Monte Carlo codes.
However, one often needs to run these codes repeatedly
to either build up statistical data or vary input
parameters. As this paper will show, one can very
easily use the Message Passing Interface (MPI)
paradigm combined with the Fortran or C programming
languages, to run thousands of different cases in a very
short amount of time.

We discuss two different applications here.  The
first code solves a large number of linear equations
while the second code (WOPWOP) solves an
aeroacoustics integral equation.

MULTIPLE GAUSSIAN ELIMINATION CODES
Before we describe the self-scheduling version of

the WOPWOP aeroacoustics code, we will present a
much simpler program, which solves numerous NxN
linear systems of equations on P processors.  Each
processor creates a matrix A of random numbers and a
right hand side (RHS) of random numbers, and solves
the system.  One could easily change this code so that
each processor is sent a matrix and a RHS, or each
processor could use the same matrix and be sent a
different RHS (This scenario is representative of an
aerodynamic panel code or an electromagnetic moment
method code).

* Professor, Department of Aerospace Engineering,
Associate Fellow
† Senior Research Engineer, Computational Modeling and
Simulation Branch, Senior Member

Copyright ©2000 by the American Institute of Aeronautics
and Astronautics, Inc.  No copyright is asserted in the
United States under Title 17, U.S. Code. The U. S.
Government has a royalty-free license to exercise all rights
under the copyright herein for Governmental Purposes.  All
other rights are reserved by the copyright owner.



AIAA-2000-0346

American Institute of Aeronautics and Astronautics
2

The self-scheduling approach presented in this
paper is based upon the Single Program Multiple Data
(SPMD) parallel programming paradigm.  In order to
understand this paradigm, you need to understand that
every processor on the parallel computer (or
workstation cluster) will run the same computer
program.   Each processor may execute different
portions of the code or use different input data however,
and this is accomplished primarily by using Fortran IF
statements that use the variable ‘myid’, which is a
unique number that each processor will have assigned
to it.  References 7 and 8 describe this in more detail.

Figure 1 shows a flowchart of this program. The
code has one large IF–THEN–ELSE construct.  The
master processor performs the first half of IF–THEN–
ELSE, while the slaves perform the second half (the
ELSE portion).  The code that runs on the master has a
DO–LOOP that loops over the number of different
linear systems of equations to solve.  For each iteration
of the DO–LOOP, the master processor waits to get a
message from an idle slave processor, and then tells the
slave to work on a new matrix.  Once the master has
finished the DO–LOOP, it then loops through all the
slave processors, and tells each one to stop working.
This insures that the program ends smoothly.  You
would not want to have the master stop before telling
all the slaves to stop working.

At the start of the execution, each of the slave
processors first sends a message to the master notifying
the master that they are ready for work.  The slave
processors then wait to get a message from the master.
Once the message is received, it checks to see if the
master wants it to solve another system of equations, or
stop working.

The only MPI routines used by this program are:

MPI_INIT Initializes MPI
MPI_COMM_RANK Each processor finds it’s

Processor ID
MPI_COMM_SIZE Determine how many

processors there are
MPI_ABORT In case of error, aborts the

job
MPI_SEND Sends a message from one

processor to another
MPI_RECV Receives a message from

one processor to another
MPI_WTIME Computes wall clock time
MPI_FINALIZE Stops MPI

While MPI has over a hundred different functions,
only eight of them are required here (actually,
MPI_WTIME isn’t essential).  For more information on
MPI, see Reference 9.

Initialize MPI

MYID  =  MASTER ?

yes no

Processors 1 thru NProcessor  0

Loop over Different Matrices

Tell Worker to Work on Matrix

Done ?

Receive Message from Worker

Tell Worker to Stop

Receive Message from Worker

Stop

no

yes

Receive Message from Master

Tell Master you are Idle

More Work?

Create and Solve Matrix Stop

Write Solution to File

noyes

Figure 1.  Schematic of the self-scheduling matrix solver code.



AIAA-2000-0346

American Institute of Aeronautics and Astronautics
3

This program was able to create and solve 120 different
systems of 3000x3000 linear equations in two hours on
forty-one 400 MHz Pentium II processors connected
via a fast-ethernet switch.   So one could run roughly
120 simultaneous copies of an aerodynamic panel
method in nearly the same time.  Using a single PC, this
same amount of work would take 3.5 days.  This
approach has a parallel efficiency of essentially 100%.
Of course there are other ways to run codes such as this
in parallel (e.g. OpenMP, Python, etc.), but for the time
being MPI is a standard, portable way to do parallel
programming.

The complete F90/MPI code (named PGAUSS10) is
included in the Appendix for completeness.  This code
is only intended as an example, not a production code.
The basic framework of this code could be used for a
large variety of problems, for example Monte Carlo
chemistry codes, molecular dynamics, aerodynamic
panel methods, or optimization codes.   Any program
that needs to be run hundreds or thousands of times,
and each run requires a moderate number of floating
point operations.  All one would have to do is replace
the box in the flowchart labeled ‘Create and Solve
Matrix’ with the new application. In the program, all
that is needed is to call the new function instead of
Gauss.

THE WOPWOP NOISE PREDICTION PROGRAM
The WOPWOP computer program11, which is based

upon the Ffowcs Williams–Hawkings (FW–H)
equation12, is widely used for rotorcraft noise
predictions.  The computer program solves an integral
formulation for the noise, given the rotor blade motion
and blade surface pressure.  WOPWOP runs quite fast
compared to computational fluid dynamics (CFD)
methods, but one usually wants to run this program
numerous times.  It would be useful to be able to run
hundreds or thousands of  copies of the program very
rapidly, and to have the output organized so that it can
be post-processed easily.  This section describes a
notional parallel version of WOPWOP where N
versions of WOPWOP can be run on P processors.
This self-scheduling version will run on large parallel
supercomputers or clusters of workstations.   Results
are presented for WOPWOP running on a Beowulf-
class cluster of PC’s running Linux13, a Cray T3E, and
an SGI Origin 2000.

WOPWOP11 is a computer code that predicts the
discrete frequency noise of conventional and advanced
rotating blades.  WOPWOP implements acoustic
formulation 1A of Farassat14—a time-domain, integral
representation of the Ffowcs Williams–Hawkings
(FW–H) equation12, which is valid in both the near and
far field.  The FW–H equation is the most general form
of the Lighthill acoustic analogy15 and is appropriate
when sound is generated by surfaces in arbitrary

motion.  WOPWOP calculates the rotor noise by
integrating over the actual surface of the rotor and uses
the flapping, feathering, and lead-lag motions of the
blade up to the second harmonic.  WOPWOP can
model either stationary or moving observers.  A
complete description of the WOPWOP code along with
the description of inputs can be found in Reference 11.

The WOPWOP code is a relatively small,
computationally efficient code that can compute the
noise signal from a helicopter rotor in tens of seconds
(in some cases) on a scientific workstation.  Although
this sounds like a small amount of time, it is not
unusual to compute the noise at thousands of observer
locations on a surface to characterize the noise
directivity.  For example, if the computation for a single
observer takes only 30 seconds but there are 1024
observer locations, the total CPU time require will still
be more than 8.5 CPU hours!  In addition, some cases
may require significant computer resources for each run
(e.g. the noise due to a maneuvering helicopter).
WOPWOP is a good candidate for self-scheduled
parallelization because the program size is small and
the noise computed at one observer location is
completely independent from all other observer
locations.  Thus, the computation of noise for different
observer locations can be shared across a larger number
of processors with essentially no communication
between processors.

SELF-SCHEDULING PARALLEL WOPWOP
In order to run hundreds or thousands of copies of

WOPWOP relatively quickly, the above PGAUSS
program has been converted to handle WOPWOP,
instead of the Gaussian elimination program.   The
main program in WOPWOP was converted to a
subroutine, and a new main program was written, which
is very similar to that used in PGAUSS. Relatively few
changes were made to WOPWOP.  Only a few
parameters are passed from the new WOPWOP main
program16 to the WOPWOP main subroutine.  One of
these parameters is the observer location, and the others
are unique file names for each WOPWOP run.  It is
quite easy to revert to the serial version of WOPWOP
simply by compiling the program with a different (and
trivial) main program, so only one version of
WOPWOP has to be maintained.

Organizing Input/Output Files
In order to make the entire process as efficient as

possible, it is important to arrange the input and output
well.  At the present time, in the parallel version of the
WOPWOP code each processor reads the same input
file.  This could be easily changed so that each one
reads a different file, if that was useful.  In addition,
each processor currently writes an output file for each
case it runs.  Alternatively, one could have each
processor send the final results back to the master, and



AIAA-2000-0346

American Institute of Aeronautics and Astronautics
4

the master could write out just one file.  The ultimate
input/output implementation depends somewhat on user
preferences, but it is also important to ensure that
communication costs are minimal and that the load is
efficiently balanced (e.g., the master processor does not
have too much work to do so that the slave processors
have to wait unnecessarily).

For this paper, the output from each processor is
directed to a new file each time a processor runs a new
case.  This is done using code such as:

write( myfile,’(a,i3.3,a)’ ) &
    ’wop’, int(xnew(4)),’.out’

The variable ‘myfile’ is declared a character
variable, and will be used to define a unique filename
for each case run in WOPWOP.  The variable xnew(4)
is an integer corresponding to the case number being
run.  Therefore, if we were running 120 different
observer locations, xnew(4) would vary from 1 to 120.
So the output of case number 60 would be written to a
file named  ‘wop060.out’.  WOPWOP also writes out
two other files for each case.  One of these has the time
history of the signal and the other has the overall sound
pressure level (OASPL) data.  For observer location 60,
these would be called: wop060.dat and oaspl060.dat,
respectively.

In this implementation, WOPMAIN is called with a
parameter list of four variables. The first variable,
‘xnew’, is a real vector of length 4.   This vector
contains the x, y, and z offset utilized to determine
observer location of this instance of execution.  The
fourth variable in ‘xnew’ is the case number.

The other three variables passed to WOPMAIN are
the three file names (myfile, wopfile and splfile), of the
output files described above.  For each observer
location WOPMAIN is called, it will read the input file,
and then it will create three output files.  So for a run
with 120 cases, there would be 360 output files.

The implementation described here is just one
example of how input and output can be handled.  In
future versions of WOPWOP, we will permit several
different cases to be included in the namelist file
simultaneously, but we will also keep the option of
being able to specify an array of observer locations.
We will also send some of the output data back to the
main program, so that it can be organized into a single
output file.

RESULTS
Figure 2 shows the results of running WOPWOP on

three Pentium II processors, and using 64 observer
locations.  The results were easily used to create an 8x8
array of thickness noise for different observer locations.
This run required 430 CPU seconds.

In addition to OASPL levels, WOPWOP also stores
the time histories of the acoustic pressure for each

observer location.   Figure 3 shows an example of this,
by presenting the time histories at points 1, 32 and, 64
from the case shown in Figure 2.

Code Performance
In order to illustrate the speed of the parallel version of
WOPWOP, Figure 4 shows the CPU time required to
compute a time history with 512 points at 400 observer
locations using different numbers of processors on the
PC cluster.  Since this approach is perfectly parallel
(essentially no inter-processor communications are
required), the computer time scales perfectly with
number of processors.  While it took 4800 seconds to
run the 400 observer solutions on one processor  (and
one master processor), it took only 127 seconds using
47 processors (and one master processor).

2.5 3 3.5 4 4.5
X

-2.75

-2.5

-2.25

-2

-1.75

-1.5

-1.25

-1

Y

Total
107.342
107.228
107.114
107
106.885
106.771
106.657
106.543
106.429
106.315
106.2
106.086
105.972
105.858
105.744

Figure 2.  Contour plot of OASPL for different
observer locations.

2 4 6 8 10
t

-14

-12

-10

-8

-6

-4

-2

0

2

T

Obs. Point 64
Obs. Point 32
Obs. Point 1

Figure 3.  Time histories of pressure at three
different observer locations.



AIAA-2000-0346

American Institute of Aeronautics and Astronautics
5

The WOPWOP code was also run on several other
parallel computers.  In all these cases, 48 processors
were used and 400 observer locations were computed.
Table 1 shows the timing results for these runs.  The
results show that the PC clusters can be very effective
computing platforms for problems such as these.  It
should be noted that the variables in the program are
simply defined as ‘REAL,’ and the default precision
was used on each machine (which is 64-bit on the T3E).
However, the code was run on the SGI Origin 2000
with the –r8 option (which promotes all real variables
to 64-bit precision automatically), and in this case the
CPU time was 98 seconds.   So precision had little
effect on the timings (at least on the SGI Origin).  In
addition, it should be noted that the times shown below
include time for both computation and file input and
output.  This same example was run on the Origin 2000
using 100 processors and it required 56 seconds.

Computer
Compile
Options

Time
(Sec.)

Beowulf Cluster,
Penn State,

400 MHz PII
- O3 127

Cray T3E,
NASA Goddard,

300 MHz Alpha 21164
- O3 177

SGI  O2000
NCSA

195 MHz R10000
- O3 95

Table 1.  CPU Times on Several Different
Computers using 48 Processors and 400 Observer

Locations.

In the present version of WOPWOP, each processor
reads the input file for each case it runs.   In some
cases, such as when you have detailed surface loading

data in the input file, the file could be large.  In this
situation, it may be undesirable to have each processor
reading from the same file, hence a better alternative
would then have the master processor read the file and
then broadcast or send the data to the other processors.
A typical case might require 80 chordwise, 30
spanwise, and 1440 azimuthal points with two floating
point numbers required at each point.   In single
precision, this would amount to 28 megabytes (224
megabits) of data.  Engineers are now generally aware
of the approximation used to compute computational
time,

Megaflops

OperationsPointFloating
10TimeCPU 6−=

but they are less use to thinking of communication time.
Nevertheless, a rough approximation of the same form
is available to determine the communication time
required.  This approximation is written

Second/Megabits

SentDataofBits
10TimeionCommunicat 6−=

The above estimate does not included the overhead
(latency) in sending data., but it enables one to make
crude estimates of the cost of sending data.  On large
parallel supercomputers, latency is measured in
microseconds, while on Beowulf clusters it can be
significantly larger. If a fast-ethernet network can
sustain 50 megabits/second (50% of peak), then it
might require roughly 4 seconds to send the 28
megabytes of data.  For future versions of WOPWOP
(or other self-scheduling parallel codes), it is important
to be able to understand the cost of doing computations
and the cost of communicating between processors as
well so that appropriate code design choices can be
made.  It should be mentioned that there are ways to
hide the cost of the communications, such as when your
computer and algorithm allow you to communicate and
compute simultaneously.

BEOWULF  PC CLUSTERS
The COst effective COmputing Array (COCOA) at
Penn State17,18,19 is a 50-processor cluster of off-the-
shelf PCs connected via fast ethernet (100 Mbit/sec).
The PCs  run RedHat Linux with MPI for parallel
programming and DQS for queueing the jobs. Each
node of COCOA consists of dual 400 MHz Intel
Pentium II Processors in a symmetric-multiprocessor
(SMP) configuration with 512 MB of memory (512 KB
L2 cache). A single Baynetworks 27-port fast-ethernet
switch with a backplane bandwidth of 2.5 Gigabits per
second is used for the networking. The entire system
cost approximately $100,000 (in 1998).  Detailed

0

1000

2000

3000

4000

5000

0 10 20 30 40 50

No. of Processors

C
P

U
 T

im
e 

(S
ec

.)

WOPWOP Ideal

Figure 4.   Time required to solve for 400
observer positions on the PC cluster.



AIAA-2000-0346

American Institute of Aeronautics and Astronautics
6

information on how COCOA was built can be obtained
from its web-site.17  COCOA was built to enable the
study of complex fluid dynamics problems using CFD
without depending on expensive external
supercomputing resources.  This system could be easily
expanded to include more processors.  Two Fortran
compilers, the Portland Group Fortran compiler and the
Absoft Pro Fortran compiler, in addition to the GNU C
(gcc) compiler have been utilized on COCOA.

In order to illustrate the computational speed of the
machine, Figure 5 shows the Mflops obtained from an
inviscid, unstructured CFD code.18,19  For this case, an
unstructured tetrahedral grid with 483,565 cells was
used and the run consumed 1.2 GB of RAM. The
benchmark showed that COCOA was almost twice as
fast as an older IBM SP2 (66 MHz RS/6000-370 nodes)
for this application. In order to show the networking
speeds, Figure 6 shows the results obtained from the
netperf   test :

   netperf –t UDP_STREAM -l 60 -H <target-machine>
-- -s 65535 -m <packet-size>

This is indicative of the communication speed between
any two nodes. It is seen that almost 96% of the peak
communication speed of 100 Mbit/sec is achieved
between any two nodes for packet sizes above 1000
bytes.

Figure 5.  Timings for a CFD code run on COCOA
(400 MHz) and an IBM SP2 (66 MHz)   (see Ref. 18).

COCOA was found extremely suitable for our
numerical simulations. One of the real benefits of
inexpensive machines is that they do not have to be
shared with hundreds of other users, and we do not
have to wait days in a queueing system. We quite often
have to wait several hours at a supercomputer center
just to use a few processors. In addition, while it is
quite difficult to get 50,000 CPU hours at a

supercomputer center, the COCOA Beowulf cluster
provides more than 400,000 CPU hours per year.
Furthermore, processors on parallel supercomputers are
usually at most twice as fast as these PC processors for
large production codes.  COCOA was also found to
have good scalability with most of the MPI applications
used. Although Beowulf clusters have very high latency
as compared to conventional supercomputers, this has
not been a factor for many important computational
fluid dynamics applications.  For those codes that have
high communication to computation ratios, COCOA
was not found a suitable platform because of the high
latency. Faster interconnect networks (such as Myrinet)
could be used to decrease latency, but these would
increase the system cost by about 50%.

Figure 6.  Network timings on COCOA (see Ref. 18).

CONCLUSIONS
We have presented two examples of self-scheduling

parallel computer programs that allow one to run
numerous copies of a serial algorithm.  The first
example was a Gaussian elimination problem,
representative of aerodynamic panel methods or
electromagnetic moment methods.  The results showed
essentially 100% parallel efficiency, since there was
virtually no interprocessor communication.

We also presented a parallel version of the noise
prediction code WOPWOP that will permit hundreds or
thousands of instances of WOPWOP to be run very
easily.   We also discussed how the input and output
can be organized and presented from all the different
runs. The use of the Message Passing Interface (MPI) to
run multiple copies of a serial code was found to be a
very effective way to obtain results over large
parameter spaces.
Since the approach outlined here is
applicable to a wide variety of
engineering and scientific problems,
we have described the approach in



AIAA-2000-0346

American Institute of Aeronautics and Astronautics
7

detail, and included a sample code
in the Appendix, which can be used
as a template.  While grand
challenge type problems have been
run on parallel supercomputers for
many years, there have been few
engineering applications that have
utilized these machines.  The
approach outlined here will allow
more people to use parallel
supercomputers and workstation
clusters, especially in a design
environment where large parameter
spaces must be investigated.

REFERENCES

1 Chatterjee, R., Postawa, Z., Winograd, N., and
Garrison, B. J., “Molecular Dynamics Simulation Study
of Molecular Ejection Mechanisms: keV, Particle-
bombardment of C6H6/Ag {111},” J. Phys. Chem. B,
103, 151-163 (1999).
2 Nwobi, O.C., Long, L. N., and Micci, M. M.,
“Molecular Dynamics Studies of Thermophysical
Properties of Supercritical Ethylene,” J. of
Thermophysics and Heat Transfer, Vol. 13, No. 2,
April–June, 1999.
3 Kaltz, T. L., Long, L. N., and Micci, M. M.,
“Supercritical Vaporization of Liquid Oxygen Droplets
using Molecular Dynamics,” Combustion Science and
Technology, 1998.
4 Anderson, J. B., Traynor, C. B., and Boghosian, B.
M., An Exact Quantum Monte Carlo Calculation of the
He-He Interaction Potential, J. Chem. Phys. 99, 345,
1993.
5 Kantor, A., Long, L. N., Micci, M. M., “Molecular
Dynamics Simulation of Dissociation Kinetics,” AIAA
Paper No. 2000-0213, Reno, NV, Jan., 2000.
6 Strawn, R. C., Oliker, L., and Biswas, R.; “New
Computational Methods for the Prediction and Analysis
of Helicopter Noise,” J. of Aircraft, Vol. 34, No. 5,
Sept., 1997.
7 http://www.mhpcc.edu/training/
8 http://www.personal.psu.edu/lnl/424/
9 Gropp, W., Lusk, E., Skjellum, A., “Using MPI,” MIT
Press, 1994.
10 http://www.personal.psu.edu/lnl/424/mpi/pgauss.f
11 Brentner, Kenneth S., “Prediction of Helicopter Rotor
Discrete Frequency Noise—A Computer Program
Incorporating Realistic Motions and Advanced
Acoustic Formulation,” NASA TM-87721, Oct., 1986.
12 Ffowcs Williams, J. E., and Hawkings, D. L., “Sound
Generated by Turbulence and Surfaces in Arbitrary
Motion,” Philosophical Transactions of the Royal
Society, Vol. A264, No. 1151, 1969, pp. 321–342.

13 Welsh, M., Linux Installation and Getting Started,
http://metalab.unc.edu/mdw/LDP/gs/gs.html.
14 Farassat, F., and Succi, George P., “The Prediction of
Helicopter Discrete Frequency Noise,” Vertica, Vol. 7,
No. 4, 1983, pp. 309–320.
15 Lighthill, M. J., “On Sound Generated
Aerodynamically, I: General Theory,” Proceedings of
the Royal Society, Vol. A211, 1952, pp. 564–587.
16 http://www.personal.psu.edu/lnl/424/mpi/wwmain.f
17 http://cocoa.aero.psu.edu/
18 Modi, A., Unsteady Separated Flow Simulations
using a Cluster of Workstations, M. S. Thesis, Penn
State University, May, 1999.
19 Modi, A. and Long, L. N., “Unsteady Separated Flow
Simulations using a Cluster of Workstations,” AIAA
Paper 2000-0272, Reno, NV, Jan., 2000.



AIAA-2000-0346

American Institute of Aeronautics and Astronautics
8

APPENDIX:

Self-Scheduling F90/MPI Gaussian Elimination Program

!**********************************************************************
!                        PGAUSS.F
!  Self-Scheduling Parallel Driver Routine to Solve Many Linear Systems
!
! One of the interesting features of this code is the ’self scheduling’.
! The master processor does nothing but assign work for the other
! processors.  This approach can be used for many of numerical methods.
! It works especially well when the processors do not have the same
! speed (or some processors are given more work), since it will
! automatically give more work to the faster processors.
!
! For the latest version of this program go to:
!       http://www.personal.psu.edu/lnl/424/mpi/pgauss.f
!
!  Prof. Lyle Long, The Pennsylvania State University
!  lnl@psu.edu,   April 16, 1999
!************************************************************************
      program main
      implicit none
      include ’mpif90.h’

      integer myid, numprocs, ierr, status(MPI_STATUS_SIZE),nn, &
           i,j, numsent, sender, rowtype,anstype,donetype, rows,cols,total
      parameter ( nn = 5000 )
      real*8 ans, ops, tstart,tend, a(nn,nn), b(nn), x(nn)
      character*15 myfile

      ans = 1.0

! Initialize MPI

      call MPI_INIT( ierr )                               !   Initialize MPI
      call MPI_COMM_RANK( MPI_COMM_WORLD, myid, ierr )    !   Find myid
      call MPI_COMM_SIZE( MPI_COMM_WORLD, numprocs, ierr )!   Find numprocs

      print *, "Process ", myid, " of ", numprocs, " is alive"

      if (numprocs .lt. 2) then
         print *, "Master-Slave code must have at least 2 processes!"
         call MPI_ABORT( MPI_COMM_WORLD, 1 )
         stop
      end if

      total = 120   ! This sets how many linear systems will be solved

      rowtype  = 1
      anstype  = 2
      donetype = 3

      tstart = mpi_wtime()



AIAA-2000-0346

American Institute of Aeronautics and Astronautics
9

      if ( myid .eq. 0 ) then  !----This is the Master processor Code---
        print *, ’ Number of Processors                  = ’, numprocs
        print *, ’ Size of Matrices                      = ’, nn, ’ by ’, nn
        print *, ’ Total number of Linear Systems Solved = ’, total
        numsent = 0

        do i = 1, total

           numsent = numsent + 1

!    Wait for a message from any processor, before sending them work:
           call MPI_RECV(ans, 1, MPI_DOUBLE_PRECISION, MPI_ANY_SOURCE,&
                         anstype, MPI_COMM_WORLD, status, ierr)

!    this tells you which processor is ready for work:
           sender = status(MPI_SOURCE)

!    send more work to the same processor that just finished:
           call MPI_SEND(numsent, 1, MPI_INTEGER, sender,&
                         rowtype, MPI_COMM_WORLD, ierr)

           print *, ’ Processor ’, sender, ’, working on matrix no. ’,i

        end do

!    When done, tell all the processors to stop

        do i = 1, numprocs-1
           call MPI_RECV(ans, 1, MPI_DOUBLE_PRECISION, MPI_ANY_SOURCE,&
                         anstype, MPI_COMM_WORLD, status, ierr)
           sender = status(MPI_SOURCE)
           call MPI_SEND( numsent, 1, MPI_INTEGER, sender,&
                          donetype, MPI_COMM_WORLD, ierr)
        end do

      else   ! ----this is the start of the slave processes-------------

 ! Tell the Master you are ready for work:
 90      call MPI_SEND(ans, 1, MPI_DOUBLE_PRECISION, 0, anstype, &
                       MPI_COMM_WORLD, ierr)

 !   receive info from master :
         call MPI_RECV(NUMSENT, 1, MPI_INTEGER, 0,&
                       MPI_ANY_TAG, MPI_COMM_WORLD, status, ierr)

 !   if done quit, otherwise create matrix and solve it:
         if (status(MPI_TAG) .ne. donetype)  THEN

            ! create a random diagonally dominant matrix & RHS
            call random_number(a)
            call random_number(b)
            do j=1,nn
               a(j,j) = 10.0*nn
               b(j)   = 10.0*nn
            end do

            call gauss( a, b, nn, x)    ! solve system of equations

 !   the following writes character info to the character myfile

            write(myfile,900) ’out’, NUMSENT, ’.dat’
 900        format(a,i3.3,a)



AIAA-2000-0346

American Institute of Aeronautics and Astronautics
10

            open ( 77, file=myfile )
              do i=1,nn
                write(77,*) i, x(i)
              end do
            close( 77 )

            GOTO 90

         END IF   ! end IF for donetype

      end if   ! end master-slave IF-THEN-ELSE construct

      tend = mpi_wtime()

!  have each processor print out it’s cpu time:
      print *, ’ node=’ , myid,  ’, time = ’,tend-tstart,’ seconds’

      if ( myid .eq. 0 ) then
         print *, ’ total megaflops = ’, &
                   1.0e-6 * (2.0/3.0) * nn**3 * total / (tend-tstart)
      end if

      call MPI_FINALIZE(ierr)
      stop
      end
!------------------------------------------------------------
       subroutine gauss(a,b,n,x)
!------------------------------------------------------------
!  this routine performs Gaussian elimination.
!  The matrix is ’a’, the right-hand-side is ’b’,
!  and the solution is ’x’.  It does not pivot.
!------------------------------------------------------------
      implicit none
      integer n, i, j, row
      real*8 a(n,n), x(n), ratio, b(n)

      do i = 2, n    ! forward elimination, loop thru elements 2 thru n
        do row = i, n       ! scale all the rows and add to row i-1
           ratio  = a(row,i-1) / a(i-1,i-1)
           b(row) = b(row)  -   ratio * b(i-1)

           do j = i, n                ! loop over all columns from i to n:
              a(row,j) = a(row,j)  -   ratio * a(i-1,j)
           end do
        end do

      end do                          ! this ends the forward elimination

      x(n) = b(n) / a(n,n)            ! back substitute, first find x(n)

      do i = n-1, 1, -1
        x(i) = b(i) / a(i,i)
        do j = i+1, n
          x(i)   = x(i) - a(i,j) * x(j) / a(i,i)
        end do
      end do

      return
      end


